Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Pharmacol ; 14: 1111218, 2023.
Article in English | MEDLINE | ID: covidwho-2289042

ABSTRACT

Parthenolide (PTL or PAR) was first isolated from Magnolia grandiflora and identified as a small molecule cancer inhibitor. PTL has the chemical structure of C15H20O3 with characteristics of sesquiterpene lactones and exhibits the biological property of inhibiting DNA biosynthesis of cancer cells. In this review, we summarise the recent research progress of medicinal PTL, including the therapeutic effects on skeletal diseases, cancers, and inflammation-induced cytokine storm. Mechanistic investigations reveal that PTL predominantly inhibits NF-κB activation and other signalling pathways, such as reactive oxygen species. As an inhibitor of NF-κB, PTL appears to inhibit several cytokines, including RANKL, TNF-α, IL-1ß, together with LPS induced activation of NF-κB and NF-κB -mediated specific gene expression such as IL-1ß, TNF-α, COX-2, iNOS, IL-8, MCP-1, RANTES, ICAM-1, VCAM-1. It is also proposed that PTL could inhibit cytokine storms or hypercytokinemia triggered by COVID-19 via blocking the activation of NF-κB signalling. Understanding the pharmacologic properties of PTL will assist us in developing its therapeutic application for medical conditions, including arthritis, osteolysis, periodontal disease, cancers, and COVID-19-related disease.

2.
Front Immunol ; 14: 1146196, 2023.
Article in English | MEDLINE | ID: covidwho-2287498

ABSTRACT

The devastating COVID-19 pandemic caused by SARS-CoV-2 and multiple variants or subvariants remains an ongoing global challenge. SARS-CoV-2-specific T cell responses play a critical role in early virus clearance, disease severity control, limiting the viral transmission and underpinning COVID-19 vaccine efficacy. Studies estimated broad and robust T cell responses in each individual recognized at least 30 to 40 SARS-CoV-2 antigen epitopes and associated with COVID-19 clinical outcome. Several key immunodominant viral proteome epitopes, including S protein- and non-S protein-derived epitopes, may primarily induce potent and long-lasting antiviral protective effects. In this review, we summarized the immune response features of immunodominant epitope-specific T cells targeting different SRAS-CoV-2 proteome structures after infection and vaccination, including abundance, magnitude, frequency, phenotypic features and response kinetics. Further, we analyzed the epitopes immunodominance hierarchy in combination with multiple epitope-specific T cell attributes and TCR repertoires characteristics, and discussed the significant implications of cross-reactive T cells toward HCoVs, SRAS-CoV-2 and variants of concern, especially Omicron. This review may be essential for mapping the landscape of T cell responses toward SARS-CoV-2 and optimizing the current vaccine strategy.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Epitopes , COVID-19 Vaccines , Pandemics , Proteome , T-Lymphocytes , Immunodominant Epitopes , Immunity , Receptors, Antigen, T-Cell
3.
Int J Environ Res Public Health ; 19(15)2022 07 29.
Article in English | MEDLINE | ID: covidwho-1969234

ABSTRACT

Although previous research shows great interest in improving the sustainability of organizations' performance, little is known about individual sustainable performance, especially for special groups such as tour guides. Drawing on the Conservation of Resources (COR) theory, this study aimed to investigate the effect of environmental dynamism caused by COVID-19 on tour guides' sustainable performance and mediating role of vitality and intervention mechanism in this relationship. Adopting a quantitative research method, we collected data from 382 professional tour guides in China via three surveys. The Structural Equation Model (SEM) and PROCESS were used to test the hypotheses. The results revealed that: (1) environmental dynamism was negatively related to tour guides' sustainable performance and (2) vitality at work mediated this negative effect; (3) a positive stress mindset moderated the relationship between environmental dynamism and vitality; (4) supportive policy's moderating role in the relationship of vitality and sustainable performance was not significant. The above conclusions contribute to the literature about the external environment, emotional state, performance management and application boundary of COR theory in the context of the COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , China , Humans , Pandemics/prevention & control , Policy , Surveys and Questionnaires
5.
Front Psychol ; 12: 626547, 2021.
Article in English | MEDLINE | ID: covidwho-1325556

ABSTRACT

Objective: The COVID-19 epidemic has generated great stress throughout healthcare workers (HCWs). The situation of HCWs should be fully and timely understood. The aim of this meta-analysis is to determine the psychological impact of COVID-19 pandemic on health care workers. Method: We searched the original literatures published from 1 Nov 2019 to 20 Sep 2020 in electronic databases of PUBMED, EMBASE and WEB OF SCIENCE. Forty-seven studies were included in the meta-analysis with a combined total of 81,277 participants. Results: The pooled prevalence of anxiety is 37% (95% CI 0.31-0.42, I2 = 99.9%) from 44 studies. Depression is estimated in 39 studies, and the pooled prevalence of depression is 36% (95% CI 0.31-0.41, I2 = 99.6%). There are 10 studies reported the prevalence of insomnia, and the overall prevalence of insomnia is 32% (95% CI 0.23-0.42, I2 = 99.5%). The subgroup analysis showed a higher incidence of anxiety and depression among women and the frontline HCWs compared to men and non-frontline HCWs respectively. Conclusions: The COVID-19 pandemic has caused heavy psychological impact among healthcare professionals especially women and frontline workers. Timely psychological counseling and intervention ought to be implemented for HCWs in order to alleviate their anxiety and improve their general mental health.

6.
Mol Med ; 26(1): 69, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-635101

ABSTRACT

BACKGROUND: We previously showed that the autophagy inhibitor chloroquine (CQ) increases inflammatory cleaved caspase-1 activity in myocytes, and that caspase-1/11 is protective in sterile liver injury. However, the role of caspase-1/11 in the recovery of muscle from ischemia caused by peripheral arterial disease is unknown. We hypothesized that caspase-1/11 mediates recovery in muscle via effects on autophagy and this is modulated by CQ. METHODS: C57Bl/6 J (WT) and caspase-1/11 double-knockout (KO) mice underwent femoral artery ligation (a model of hind-limb ischemia) with or without CQ (50 mg/kg IP every 2nd day). CQ effects on autophagosome formation, microtubule associated protein 1A/1B-light chain 3 (LC3), and caspase-1 expression was measured using electron microscopy and immunofluorescence. Laser Doppler perfusion imaging documented perfusion every 7 days. After 21 days, in situ physiologic testing in tibialis anterior muscle assessed peak force contraction, and myocyte size and fibrosis was also measured. Muscle satellite cell (MuSC) oxygen consumption rate (OCR) and extracellular acidification rate was measured. Caspase-1 and glycolytic enzyme expression was detected by Western blot. RESULTS: CQ increased autophagosomes, LC3 consolidation, total caspase-1 expression and cleaved caspase-1 in muscle. Perfusion, fibrosis, myofiber regeneration, muscle contraction, MuSC fusion, OCR, ECAR and glycolytic enzyme expression was variably affected by CQ depending on presence of caspase-1/11. CQ decreased perfusion recovery, fibrosis and myofiber size in WT but not caspase-1/11KO mice. CQ diminished peak force in whole muscle, and myocyte fusion in MuSC and these effects were exacerbated in caspase-1/11KO mice. CQ reductions in maximal respiration and ATP production were reduced in caspase-1/11KO mice. Caspase-1/11KO MuSC had significant increases in protein kinase isoforms and aldolase with decreased ECAR. CONCLUSION: Caspase-1/11 signaling affects the response to ischemia in muscle and effects are variably modulated by CQ. This may be critically important for disease treated with CQ and its derivatives, including novel viral diseases (e.g. COVID-19) that are expected to affect patients with comorbidities like cardiovascular disease.


Subject(s)
Caspase 1/metabolism , Caspases, Initiator/metabolism , Chloroquine/pharmacology , Coronavirus Infections/pathology , Ischemia/pathology , Muscle, Skeletal/pathology , Pneumonia, Viral/pathology , Animals , Autophagosomes/metabolism , Autophagy/drug effects , Betacoronavirus , COVID-19 , Coronavirus Infections/drug therapy , Glycolysis/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Muscle Cells/metabolism , Muscle Development , Muscle, Skeletal/metabolism , Neovascularization, Physiologic , Oxidative Phosphorylation , Pandemics , Peripheral Arterial Disease/pathology , Pneumonia, Viral/drug therapy , Regeneration , SARS-CoV-2 , Signal Transduction , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL